Telegram Group & Telegram Channel
NumPy tricks for beginners :

👉 Reshaping arrays: NumPy provides the np.reshape() function, which allows you to change the shape of an array while preserving its data. This can be useful for converting between different data formats, such as converting a one-dimensional array into a two-dimensional matrix. For example, the following code reshapes a one-dimensional array into a two-dimensional matrix with two rows and three columns:

import numpy as np

# Create a one-dimensional NumPy array
x = np.array([1, 2, 3, 4, 5, 6])

# Reshape the array into a two-dimensional matrix with 2 rows and 3 columns
x_matrix = np.reshape(x, (2, 3))

# Print the resulting matrix
print(x_matrix)

output:
[[1 2 3]
[4 5 6]]

👉Stacking arrays: NumPy provides the np.vstack() and np.hstack() functions, which allow you to stack arrays vertically or horizontally. This can be useful for combining multiple arrays into a single array, or for splitting a single array into multiple arrays. For example, the following code stacks two one-dimensional arrays vertically to create a two-dimensional matrix:

import numpy as np

# Create two one-dimensional NumPy arrays
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])

# Stack the arrays vertically to create a two-dimensional matrix
z = np.vstack((x, y))

# Print the resulting matrix
print(z)

output:
[[1 2 3]
[4 5 6]]

👉Broadcasting: NumPy allows you to perform mathematical operations on arrays with different shapes, using a technique called broadcasting. This allows you to perform operations on arrays of different sizes, as long as their shapes are compatible. For example, the following code adds a scalar value to each element of a two-dimensional array:

import numpy as np

# Create a two-dimensional NumPy array
x = np.array([[1, 2, 3],
[4, 5, 6]])

# Add a scalar value to each element of the array
y = x + 10

# Print the resulting array
print(y)

output:
[[11 12 13]
[14 15 16]]

Share and Support
@Python_Codes



tg-me.com/python_codes/263
Create:
Last Update:

NumPy tricks for beginners :

👉 Reshaping arrays: NumPy provides the np.reshape() function, which allows you to change the shape of an array while preserving its data. This can be useful for converting between different data formats, such as converting a one-dimensional array into a two-dimensional matrix. For example, the following code reshapes a one-dimensional array into a two-dimensional matrix with two rows and three columns:

import numpy as np

# Create a one-dimensional NumPy array
x = np.array([1, 2, 3, 4, 5, 6])

# Reshape the array into a two-dimensional matrix with 2 rows and 3 columns
x_matrix = np.reshape(x, (2, 3))

# Print the resulting matrix
print(x_matrix)

output:
[[1 2 3]
[4 5 6]]

👉Stacking arrays: NumPy provides the np.vstack() and np.hstack() functions, which allow you to stack arrays vertically or horizontally. This can be useful for combining multiple arrays into a single array, or for splitting a single array into multiple arrays. For example, the following code stacks two one-dimensional arrays vertically to create a two-dimensional matrix:

import numpy as np

# Create two one-dimensional NumPy arrays
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])

# Stack the arrays vertically to create a two-dimensional matrix
z = np.vstack((x, y))

# Print the resulting matrix
print(z)

output:
[[1 2 3]
[4 5 6]]

👉Broadcasting: NumPy allows you to perform mathematical operations on arrays with different shapes, using a technique called broadcasting. This allows you to perform operations on arrays of different sizes, as long as their shapes are compatible. For example, the following code adds a scalar value to each element of a two-dimensional array:

import numpy as np

# Create a two-dimensional NumPy array
x = np.array([[1, 2, 3],
[4, 5, 6]])

# Add a scalar value to each element of the array
y = x + 10

# Print the resulting array
print(y)

output:
[[11 12 13]
[14 15 16]]

Share and Support
@Python_Codes

BY Python Codes


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/python_codes/263

View MORE
Open in Telegram


Python Codes Telegram | DID YOU KNOW?

Date: |

China’s stock markets are some of the largest in the world, with total market capitalization reaching RMB 79 trillion (US$12.2 trillion) in 2020. China’s stock markets are seen as a crucial tool for driving economic growth, in particular for financing the country’s rapidly growing high-tech sectors.Although traditionally closed off to overseas investors, China’s financial markets have gradually been loosening restrictions over the past couple of decades. At the same time, reforms have sought to make it easier for Chinese companies to list on onshore stock exchanges, and new programs have been launched in attempts to lure some of China’s most coveted overseas-listed companies back to the country.

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Python Codes from es


Telegram Python Codes
FROM USA